翻訳と辞書
Words near each other
・ Helicopage
・ Helicopelta
・ Helicopelta rostricola
・ Helicinoidea
・ Heliciopsis
・ Heliciopsis cockburnii
・ Heliciopsis lanceolata
・ Heliciopsis montana
・ Heliciopsis rufidula
・ Heliciopsis velutina
・ Heliciopsis whitmorei
・ Helicis major
・ Helicis minor
・ Helicity
・ Helicity (particle physics)
Helicity basis
・ Helicius
・ Helicobacter
・ Helicobacter acinonychis
・ Helicobacter anseris
・ Helicobacter bilis
・ Helicobacter brantae
・ Helicobacter canadensis
・ Helicobacter canis
・ Helicobacter cellulitis
・ Helicobacter cholecystus
・ Helicobacter cinaedi
・ Helicobacter felis
・ Helicobacter hepaticus
・ Helicobacter muridarum


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Helicity basis : ウィキペディア英語版
Helicity basis
In the Standard Model, using quantum field theory it is conventional to use the helicity basis to simplify calculations (of cross sections, for example). In this basis, the spin is quantized along the axis in the direction of motion of the particle.
==Spinors==
The two-component helicity eigenstates \xi_\lambda satisfy
::\sigma \cdot \hat \xi_\lambda(\hat)=\lambda \xi_\lambda(\hat) \,
:where
:\sigma \, are the Pauli matrices,
:\hat \, is the direction of the fermion momentum,
:\lambda = \pm 1 \, depending on whether spin is pointing in the same direction as \hat \, or opposite.
To say more about the state, \xi_\lambda \, we will use the generic form of fermion four-momentum:
::p^\mu= \left(E, |\vec| \sin \cos, |\vec| \sin \sin, |\vec| \cos \right) \,
Then one can say the two helicity eigenstates are
::\xi_(\vec)
= \frac| + p_z)}}
\begin
|\vec|+p_z\\
p_x+i p_y
\end
=
\begin
\cos}\\
e^\sin}
\end\,
and
::\xi_(\vec)
= \frac| + p_z)}}
\begin
-p_x+i p_y\\
|\vec|+p_z
\end
=
\begin
-e^\sin}\\
\cos}
\end\,
These can be simplified by defining the z-axis such that the momentum direction is either parallel or anti-parallel, or rather:
::\hat = \pm \hat \,.
In this situation the helicity eigenstates are for when the particle momentum is \hat = + \hat \,
::\xi_(\hat) = \begin
1\\
0
\end \, and \xi_(\hat) = \begin
0\\
1
\end \,
for then for when momentum is \hat = - \hat \,
::\xi_(-\hat) = \begin
0\\
1
\end \, and \xi_(-\hat) = \begin
-1\\
0
\end \,

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Helicity basis」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.